Titanium dioxide nanoparticle–protein interaction explained by docking approach

نویسندگان

  • Shivendu Ranjan
  • Nandita Dasgupta
  • Chinnappan Sudandiradoss
  • Chidambaram Ramalingam
  • Ashtosh Kumar
چکیده

Titanium dioxide has been proven for toxicity by in vitro and in vivo approaches, however, further studies are needed in nano-toxicological research using in silico analysis. In this study, Autodock 4.0.5 was used in an attempt to evaluate the interaction of titanium dioxide with proteins. Different cellular proteins were sorted to study the interaction, binding sites, and active sites as a pocket. These pockets have been determined using CastP - an online server. The analysis for the docked structures was performed with regard to the most efficient binding with amino acids. This study is the first of its kind to report on the in silico docking interaction of titanium dioxide nanoparticles without any surface modification. The higher negative binding energy shows strong binding of titanium dioxide with proteins. A strong interaction with different cellular proteins was observed, and more specifically, titanium dioxide nanoparticles showed frequent interaction with proline, lysine, as well as leusine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of Titanium on Growth and Forage Production of Maize (Zea mays L.) under Different Growth Stage

This study was conducted to evaluate the effect of titanium dioxide and titanium oxide foliar application during two growing stage on growth and forage production of maize during 2012 growing season in the research farm of Islamic Azad University of Varamin-Pishva Branch. The experimental design was randomized complete blocks arranged in factorial with four replications. The factors were includ...

متن کامل

Oral toxic exposure of titanium dioxide nanoparticles on serum biochemical changes in adult male Wistar rats

Objective(s): Titanium dioxide (TiO2) nanoparticles (NPs) are widely used in commercial food additives and cosmetics worldwide. Uptake of these nanoparticulate into humans by different routes and may exhibit potential side effects, lags behind the rapid development of nanotechnology. Thus, the present study designed to evaluate the toxic effect of mixed rutile and anatase TiO2 NPs on serum bioc...

متن کامل

A standardised approach for the dispersion of titanium dioxide nanoparticles in biological media.

We describe a comprehensive optimisation study culminating in a standardised and validated approach for the preparation of titanium dioxide (TiO₂) nanoparticle dispersions in relevant biological media. This study utilises a TiO₂ reference nanomaterial based on a commercially available powder that has been widely examined in both acute and chronic toxicity studies. The dispersion approach as pre...

متن کامل

Effect of Methanol and Titanium Dioxide Nanoparticles on Phytochemical Properties of Artichoke (Cynara scolymus L.)

Extended Abstract Introduction and Objective: In recent years, studies have focused on the use of new compounds that can be synthesized inside the plant and increase the photosynthetic efficiency of the plant. Some of these compounds include micronutrients and alcohols. Alcohols such as methanol as a carbon source will increase photosynthetic efficiency and improve plant growth parameters. Tit...

متن کامل

Interaction of Titanium Dioxide Nanoparticle with Human Serum Albumin: a Spectroscopic Approach

Objective: The present study is designed to investigate the interaction of titanium dioxide nanoparticle (TiO2NPs) with human serum albumin (HSA) using spectroscopic techniques. Methods: TiO2NPs was characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS) and Fourier transform infrared (FTIR) spectroscopy. Effect of NPs on the conformation of HSA was evaluated by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2018